Формы специфического иммунного ответа

Когда появляется иммунологическая память?

  • 1645
  • 1,3
  • 9

Человеческий эмбрион, находясь в утробе матери, не только взаимодействует с ее иммунными клетками, но и сам имеет различные популяции иммунных клеток, в том числе клеток памяти.

Автор
  • Елизавета Минина
  • Редакторы
    • Антон Чугунов
    • Андрей Панов
    • Биология
    • Иммунология
    • Наука из первых рук
    • Эмбриология

    Когда B- и T-лимфоциты активируются в результате вторжения в организм какого-то патогенна, те из них, что способны распознавать антигены этого патогена, начинают размножаться, причем часть новых лимфоцитов не вступает непосредственно в схватку с врагом, а становится хранителем информации о его антигенах. Такие лимфоциты называют клетками памяти; они могут циркулировать в организме еще многие годы после столкновения с патогеном, и благодаря им при повторном заражении развивается молниеносный иммунный ответ, не оставляющий никаких шансов захватчику. Казалось бы, иммунные клетки памяти должны появляться в организме после рождения, когда он начинает сталкиваться с разнообразными бактериями и вирусами. Однако, как показало недавнее исследование, в кишечнике человеческого эмбриона имеется популяция CD4+ (то есть несущих на своей поверхности гликопротеин CD4) T-клеток, которые по молекулярным свойствам соответствуют клеткам памяти. Наша статья посвящена этому открытию.

    Исследования последних десяти лет показали, что наряду с T-клетками, циркулирующими по кровотоку, существуют и «оседлые» T-клетки, которые не покидают определенные ткани . Как правило, такие Т-клетки обнаруживаются «на рубежах» организма, где риск столкновения с неприятелем наиболее высок, — например, в кишечнике, причем еще с периода эмбрионального развития.

    О Т-клетках, обитающих в органах, не относящихся к иммунной системе, можно прочесть в статье «Т-лимфоциты: путешественники и домоседы» [1], а об особенностях иммунной системы новорожденных — в статье «Сказочка не для взрослых, или Об иммунитете новорожденных» [2].

    Т-клетки были выявлены в кишечнике плода, небольшие их популяции также имеются в зародышевых лимфоузлах, тимусе и селезенке. Кроме того, CD4+ T-клетки, обладающие свойствами клеток памяти и эффекторных T-клеток, были обнаружены в крови, взятой из пуповины. Большая международная группа исследователей, провела всесторонний анализ T-клеток из кишечника человеческих эмбрионов и пришла к неожиданному выводу: в популяции кишечных T-клеток плода имеются CD4+ T-клетки памяти [3]! В состав исследовательской группы вошли и российские специалисты, работающие в Институте биоорганической химии и Сколковском институте науки и технологий: Софья Касацкая, Евгений Егоров, Марк Израэльсон, Ольга Британова и Дмитрий Чудаков. Как отмечает Софья, «лаборатория профессора Чудакова много лет сотрудничает с лабораторией Дэвида Прайса в Кардиффе по разным проектам, связанным с фундаментальными и медицинскими вопросами в иммунологии человека. Именно профессор Прайс решил позвать нас в этот проект, и так мы сделали для этой коллаборации подготовку ДНК-библиотек для высокопроизводительного секвенирования и провели анализ данных».

    Анализ T-клеток включал в себя различные подходы, такие как массцитометрия, секвенирование РНК и высокопроизводительное секвенирование T-клеточных рецепторов , благодаря которым исследователи смогли выявить различные типы Т-клеток в популяции.

    О проточной цитофлуориметрии, секвенировании ДНК и РНК, а также анализе индивидуальных репертуаров клеточных рецепторов можно прочесть в статьях на «Биомолекуле» [4–6].

    Конечно, Т-лимфоциты не находятся непосредственно в просвете кишки: они залегают в lamina propria (ресничном слизистом эпителии) (рис. 1); помимо лимфоидной ткани их можно найти в более глубоких слоях. В тонком кишечнике, клетки которого и исследовались в обсуждаемой работе, есть небольшие скопления лимфоцитов и В-клеточные фолликулы прямо под lamina propria, а также в более близком к поверхности (подслизистом) слое стенки кишечника.

    Рисунок 1. Препарат тонкой кишки эмбриона. ДНК окрашена синим цветом, красным — CD3 (корецептор Т-клеток), зеленым — белок межклеточной адгезии E-кадгерин. Желтая стрелка указывает на наивные CD4+ T-лимфоциты, а белая — на CD4+ T-клетки памяти.

    Всего выявили 22 группы Т-клеток, различающихся по экспрессии определенных белков-мáркеров; в их числе имеются наивные (то есть еще не сталкивавшиеся с антигенами) T-клетки и регуляторные T-клетки, а также T-клетки памяти. Среди них обнаружили CD4+ клетки памяти, в которых наблюдалась повышенная экспрессия белка Ki-67, служащего индикатором делящихся клеток. Кроме того, они секретировали провоспалительные цитокины интерферон-γ (INF-γ) и интерлейкин-2 (IL-2). Таким образом, исследователи показали, что разделение Т-клеток на наивные, регуляторные и клетки памяти, а также формирование обособленных популяций «оседлых» Т-клеток происходят очень рано — еще в период эмбрионального развития организма.

    Стоит отметить, что популяция наивных Т-клеток в кишечнике плода гораздо больше популяции Т-клеток памяти, в то время как у взрослого человека бóльшая часть Т-клеток кишечника, напротив, приходится на клетки памяти. Ученые предполагают, что Т-клетки памяти плода формируются при локальном столкновении наивных T-клеток с чужеродными антигенами в зародышевых лимфоузлах, в которые мигрирующие из тимуса наивные Т-клетки заходят перед тем, как окончательно «осесть» в кишечнике. Антигенами, которые запускают образование эмбриональных T-клеток памяти, могут быть молекулы лейкоцитарных антигенов матери или фрагменты молекул патогенов, которые попали в амниотическую жидкость. Исследователи отмечают, что образование разнообразных иммунных клеток в кишечнике плода подготавливает его к столкновению с множеством бактерий, которое ждет его сразу же после рождения. Таким образом, формирование популяций специализированных иммунных клеток, в том числе и клеток памяти, начинается еще в период внутриутробного развития.

    Непрошеная защита

    Как и почему прививка от одной болезни может помочь от совсем другой

    Когда появится вакцина от коронавируса, неясно — пока что эксперты соревнуются в пессимизме. Но мы уже пытаемся лечить коронавирусную инфекцию лекарствами от гриппа и малярии — может, и вакцины от других болезней сгодятся? Эта идея посетила сразу множество голов: кто-то предлагает запустить массовую вакцинацию от полиомиелита, кто-то — от туберкулеза, а ВОЗ уже предупреждает, что прививки от респираторных инфекций и гриппа вам вряд ли помогут (значит, надежда была и на них). Как ни удивительно, за этими предложениями стоят сотни научных работ. И если вглядеться в них пристально, то станет ясно, что вакцины давно перестали быть тем, чем кажутся.

    Пандемия коронавируса SARS-CoV-2 заставила нас подтянуть свои знания не только о вирусологии и эпидемиологии, но и о работе иммунной системы. Устоявшееся представление о том, что иммунитет просто защищает организм от внешних угроз, оказалось верным далеко не всегда. Многих жертв COVID-19 губит не коронавирус, как таковой — cмерть приносят собственные лейкоциты больного, которые разрушают ткань легкого, отстреливая зараженные клетки, и разводят такую воспалительную панику (так называемый «цитокиновый шторм»), с которой организм справиться не в силах.

    Теперь придется подвергнуть сомнению еще один тезис из школьного учебника: прививка защищает от того патогена, из которого сделана.

    У вакцин, судя по всему, есть немало побочных эффектов — как позитивных, так и нежелательных — и некоторые из них мы можем обратить себе на пользу в борьбе с коронавирусом.

    Убей другого
    Когда в организме заводится чужак, иммунной системе нужно время, чтобы его обнаружить, сообщить о нем в вышестоящие инстанции (лимфатические узлы, костный мозг и селезенку) и подогнать войска. Гораздо удобней было бы, если бы армия уже находилась в боевой готовности. Для этого и нужна вакцина.

    Читайте также:  Анафранил СР инструкция по применению показания, противопоказания, побочное действие – описание Anaf

    Прививка — это болезнь в миниатюре. Мы заражаем свой организм возбудителем но он настолько слаб или пассивен, что война иммунитета с ним заканчивается победой в первой же битве, победители не несут потерь и затем переключаются на патрулирование территории.

    Но что произойдет, если противников будет не один, а два — то есть если вскоре после введения вакцины в организм попадет еще один, другой патоген?

    Дело в том, что в самом начале боевых действий в наступление идут солдаты врожденного иммунитета, который не отличаются большой фантазией. Тактика их боя не зависит от того, кто им достался в противники. Например, противовирусный ответ начинается с интерферонов 1 типа — это белки, которые запускают в клетках режим «чрезвычайной ситуации». В таком режиме клетка притормаживает синтез своих ДНК, РНК и белков, чтобы в случае ее захвата вирус не мог размножаться. А если так, то совершенно неважно, кто именно атакует организм и сколько их — чрезвычайная ситуация душит любое предприятие.

    Поэтому можно предположить, что если в ваш организм попал коронавирус, а вы при этом только что ввели чрезвычайное положение по случаю войны с вакциной, оно если не остановит, то хотя бы притормозит вторжение нового интервента. Исходя из этого, американский вирусолог Константин Чумаков, который занимается оценкой эффективности и безопасности вакцин в FDA (американском минздраве), предложил бороться с коронавирусом с помощью давно изученной ослабленной вакцины от полиомиелита. В этом он наследует своим родителям — русским вирусологам Марине Ворошиловой и Михаилу Чумакову — которые занимались внедрением живой вакцины от полиомиелита в СССР в 50-х годах ХХ века.

    Массовая вакцинация не только позволила за полвека избавиться от двух типов полиовирусов из трех, но также привела к неожиданным последствиям, напрямую с полиомиелитом не связанным. Например, в 2000-х годах в африканской Гвинее-Бисау прививки снизили смертность детей на 19 процентов — и это в те годы, когда полиомиелитом в стране никто не болел. Китайские ученые отметили, что у детей, привитых от полиомиелита, реже возникают инфекционные воспаления во рту и на конечностях. А в России, по словам Чумакова-младшего, кампания по вакцинации от полиомиелита еще в 1970-х годах снизила смертность от сезонного гриппа в четыре раза. И коль скоро вакцина оказалась хорошим подспорьем в борьбе с другими вирусами, почему бы не воспользоваться этим оружием снова?

    У вакцины от полиомиелита есть безусловные плюсы: она известна давно, хорошо изучена и стоит недорого. Тем не менее, здесь есть некоторые тонкости.

    Дело в том, что вакцин от полиомиелита две. Первая это упомянутая живая ослабленная — ее детям капают в рот или скармливают на кусочке сахара. А вторая — инактивированная, ее вводят в мышцу инъекцией.

    Инактивированная появилась раньше: она безопаснее, но и менее эффективна. Родители Константина Чумакова бились за введение живой вакцины, которая дает более сильный иммунный ответ, и с тех пор во всем мире используют именно ее. Но постепенно, по мере избавления от полиовируса, страны начали переходить обратно на инактивированную вакцину, чтобы не подвергать риску людей с ослабленным иммунитетом.

    Если сейчас начать снова массово использовать живую вакцину, есть шанс, что люди из группы риска могут пострадать. Поэтому даже для давно знакомой вакцины необходимы тщательные испытания (их собираются проводить, например, в России). И если такой метод встряски иммунитета и станет для кого-то спасением, то только для тех, кто еще не болен, и тех, кому необходима экстренная защита, — в первую очередь, врачей.

    Иммунитет попутал
    Но если идея с вакциной от полиомиелита еще выглядит интуитивно понятной — в конце концов, средство от одного вируса может быть полезно и от других — то некоторые другие кажутся гораздо более странными.

    Например, многие воодушевились, когда нью-йоркские ученые подсчитали, что в странах с массовой вакцинацией от туберкулеза смертность от коронавируса ниже, чем в тех, где программу вакцинации свернули. Если бы эти результаты подтвердились, это означало бы, что некоторые страны, где туберкулез не побежден и вакцинация от него обязательна (например, Россия), могли бы с облегчением выдохнуть: если не туберкулез, так хотя бы коронавирус пройдет по касательной.

    Но туберкулез вызывают бактерии — а COVID-19 вызывают вирусы.

    Статью быстро раскритиковали: корреляцию назвали несущественной, а методику — сомнительной (среди прочего, авторы сравнивали страны в зависимости от среднего дохода населения, который не всегда соответствует качеству медицины). А после тель-авивские медики сравнили смертность от коронавируса среди невакцинированных израильтян и вакцинированных мигрантов и поставили точку в этой истории — смертность у этих групп не различалась. Выдохнуть не получится.

    Тем не менее, идея сравнить смертность в зависимости от истории прививок родилась не на ровном месте. Подобно вакцине от полиомиелита, которой приписывают способность предотвращать другие вирусные инфекции, у вакцины от туберкулеза тоже то и дело находятся удивительные свойства.

    Противотуберкулезная вакцина — это ослабленный штамм бычьей туберкулезной палочки, Mycobacterium bovis (она же зовется бациллой Кальметта-Герена, по имени своих изобретателей, отсюда и сокращение БЦЖ, Bacille Calmette-Guerin). Она родственна человеческой туберкулезной палочке — M. tuberculosis.


    Бацилла Кальметта-Герена под микроскопом
    Y tambe / wikimedia commons/ CC BY-SA 2.0

    Первое удивительное свойство БЦЖ в том, что от самого туберкулеза она защищает не так уж и хорошо: в некоторых популяциях эффективность ее и вовсе стремится к нулю.

    Зато БЦЖ успешно предотвращает лепру, которую вызывают другие члены рода микобактерий. Этому эффекту есть объяснение: у родственных бактерий похожие белки на поверхности клетки. И если организм производит антитела, которые хорошо садятся на одну микобактерию, то с какой-то долей вероятности они прилипнут и на поверхность ее родственницы, запуская иммунный ответ.

    Этот феномен называют кросс-реактивностью. И он срабатывает не только для антител, но и для Т-лимфоцитов, которые внезапно опознают врага в клетках с непривычными молекулами и убивают их — хотя механизм их работы выглядит наоборот, помнить конкретного противника, чтобы напасть на него при первой встрече.

    Иммунитет может таким образом «путать» не только родственные бактерии, но и разные вирусы: ВИЧ и гепатит, грипп и вирус Эпштейна-Барра, бактерии и одноклеточные эукариоты (столбняк и токсполазму) и даже бактерии и вирусы: цитомегаловирус и чумную палочку, ВИЧ и M. tuberculosis.

    Это приводит к тому, что у взрослых людей иногда встречаются клетки иммунологической памяти, специфичные к патогенам, которыми их хозяева никогда не болели: в том числе ВИЧ, вирусу герпеса и, как недавно оказалось, даже коронавирусу SARS-CoV-2.

    Так или иначе, многие исследователи обнаруживали у вакцины БЦЖ способность защищать не только от микобактериальных инфекций. Например, в нескольких популяциях она в два-три раза снизила смертность детей от всех причин. И это едва ли можно списать на противотуберкулезную защиту: новорожденные им практически не болеют, а значит, вакцина может действовать какими-то окольными путями. Постепенно у ученых возникло подозрение, что дело здесь и не в кросс-реактивности — в некоторых случаях «эффект дежавю», который позволяет справиться с никогда не виденным патогеном, работал независимо от Т— и В-клеток с их антителами. Это означает, что у иммунологической памяти есть и другие, ранее неизвестные механизмы.

    Читайте также:  Лечение седалищного нерва включает в себя лекарства, уколы и инъекции, при защемлении и воспалении н

    Фокусы с памятью
    Классический образ иммунной системы человека — это дерево о двух ветвях: врожденный иммунитет и приобретенный (адаптивный) иммунитет. И если второй у каждого человека свой, и сила его ответа зависит от памяти о предыдущих инфекциях, то первый должен быть одинаков у всех здоровых людей.

    Тем не менее, появляется все больше свидетельств того, что это не так.

    Даже у растений и беспозвоночных животных, которые лишены системы адаптивного иммунитета, время от времени находят признаки иммунологической памяти: комары с каждым разом все активнее пытаются убить в себе малярийного плазмодия, а иммунитет ракообразных «вспоминает» своих паразитических червей. Известны примеры и того, какие следы вторжение раздражителя оставляет в клетках врожденного иммунитета: макрофагах (пожирателях бактерий и клеточных обломков) и нейтрофилах (главных борцах с бактериями).

    Эти эффекты называют памятью врожденного иммунитета или проявлениями «натренированного иммунитета» — в случае БЦЖ тренером, соответственно, выступает вакцина. На память о пробном сражении с туберкулезом в организме остаются не только готовые к бою с туберкулезной палочкой Т— и В-лимфоциты, но и клетки врожденного иммунитета с измененным обменом веществ. Например, некоторые из них начинают выделять больше сигнальных молекул. В них намечаются эпигенетические сдвиги: одни гены «закрываются» от считывания, другие, наоборот, раскручивают, в результате изменяется и набор выделяемых веществ.


    Память врожденного иммунитета на примере моноцитов
    Paola Italiani et al. / Frontiers in Immunology, 2017 / CC BY-SA 4.0 (переведено на русский)

    Судя по тому, что некоторые проявления иммунологической памяти сохраняются в течение месяцев или даже лет после первой «тренировки», изменения затрагивают не только взрослые клетки, но и стволовые, которые продолжают производить активированных предшественников. Тренируются даже «гражданские»: обитатели костного мозга и эпителиальных тканей после инфекции или прививки продолжают и дальше производить больше молекул, которые направляют перемещения иммунных солдат по организму — а от этого зависит, например, сколько их прибежит в легкое на борьбу с коронавирусом.

    Мы не всегда можем до конца предсказать, возникнут ли эти изменения в случае каждой конкретной вакцины, а если и возникнут, то в какую сторону будут направлены. Некоторые антигены-раздражители вызывают толерантность иммунитета, то есть подавляют его работу. Другие же, наоборот, держат иммунную систему на взводе и позволяют ей агрессивнее реагировать на других врагов. В каких-то случаях эти действия могут сочетаться: на одни раздражители натренированный иммунитет станет реагировать сильнее, на другие — слабее.

    В каждом случае необходимо тщательно проверять, какую именно память оставляет после себя антиген. Иногда эти эффекты могут оказаться нам невыгодны — так, одна из вакцин от гриппа оказалась связана с аутоиммунной нарколепсией. А иногда наоборот, «вакцинную тренировку» удается обратить на пользу людям. Например, БЦЖ подумывают использовать при рассеянном склерозе и уже испытывают как средство от диабета: вакцинация во младенчестве пользы здесь не приносит, а вот экстренное введение вакцины помогает приглушить аутоиммунную атаку организма на поджелудочную железу. Та же самая вакцина в других случаях оказывается полезна, чтобы усилить иммунный ответ при раке мочевого пузыря, лейкемии, лимфоме и меланоме.

    Теперь же у нас появилась возможность воспользоваться новооткрытым свойством врожденного иммунитета и обратить его «память» против вируса SARS-CoV-2. Рассчитывать на остатки от детской вакцинации едва ли имеет смысл — данные о том, насколько долго эффект тренировки после БЦЖ сохраняется в организме, сильно разнятся — от нескольких месяцев до десятков лет (хотя есть даже работа, в которой удалось проследить межпоколенческий эффект: дети реже умирали и лучше реагировали на прививку, если родились от вакцинированной матери). Зато можно заново привить взрослых людей и понадеяться на быструю защиту (но, возможно, кратковременную).

    В этом случае, как и в истории с вакциной от полиомиелита, есть свои риски. Если иммунитет ответит на прививку слишком агрессивно, может возникнуть цитокиновый шторм, с которым организм не всегда способен справиться. Тем не менее, в аналогичном исследовании, когда БЦЖ использовали против вируса желтой лихорадки, этого не произошло, и вакцина сработала успешно. Но в условиях эпидемии нельзя быть уверенным, что люди со слабым иммунитетом и старики адекватно отреагируют на вакцинацию. Поэтому, хотя клинические испытания БЦЖ как профилактики COVID-19 уже начинаются по всему миру, от Дании до Австралии и Уганды, они будут ориентированы в первую очередь на медиков.

    Таким образом, новый коронавирус здесь может выступить в качестве двигателя иммунологического прогресса. В условиях, когда от диабета или рака можно найти и другие лекарства, едва ли испытания профилактической вакцинации достигли бы такого размаха. Теперь же у нас есть шанс собрать большой объем данных о том, какими окольными путями могут действовать привычные нам вакцины, и проверить, так ли крепка наша врожденная иммунологическая память.

    Клетки иммунологической памяти

    Специфический иммунный ответ развивается в организме параллельно с развитием инфекции или после вакцинации и приводит к формированию ряда специфических эффекторных механизмов противоинфекционной защиты:

    1. Гуморальный иммунный ответ (В–лимфоцит);
    2. Клеточный иммунный ответ (Т–лимфоцит);
    3. Иммунологическая память (Т– и В–лимфоциты);
    4. Иммунологическая толерантность.

    К этим механизмам относятся эффекторные молекулы (антитела) и эффекторные клетки (Т–лимфоциты и макрофаги) иммунной системы.

    Гуморальные иммунные реакции

    В гуморальных иммунных реакциях участвуют три клеточных типа: макрофаги (Аг–представляющие клетки), Т–хелперы и В–лимфоциты.

    Аг–представляющие клетки фагоцитируют микроорганизм и перерабатывают его, расщепляя на фрагменты (процессинг Аг). Фрагменты Аг выставляются на поверхности Аг–представляющей клетки вместе с молекулой МНС. Комплекс «Аг–молекула МНС класса II» предъявляется Т–хелперу. Распознавание комплекса Т–хелпером стимулирует секрецию ИЛ–1 макрофагами.

    Т–хелпер под действием ИЛ–1 синтезирует ИЛ–2 и рецепторы к ИЛ–2; последний стимулирует пролиферацию Т–хелперов, а также ЦТЛ. Таким образом, после взаимодействия с Аг–представляющей клеткой Т–хелпер приобретает способность отвечать на действие ИЛ–2 бурным размножением. Биологический смысл этого явления состоит в накоплении Т–хелперов, обеспечивающих образование в лимфоидных органах необходимого пула плазматических клеток, вырабатывающих АТ к данному Аг.

    В–лимфоцит. Активация В–лимфоцита предполагает прямое взаимодействие Аг с молекулой Ig на поверхности В–клетки. В этом случае сам В–лимфоцит перерабатывает Аг и представляет его фрагмент в связи с молекулой МНС II на своей поверхности. Этот комплекс распознает Т–хелпер, отобранный при помощи того же Аг. Узнавание рецептором Т–хелпера комплекса Аг–молекула МНС класса II на поверхности В–лимфоцита приводит к секреции Т–хелпером ИЛ–2, ИЛ–4, ИЛ–5, ИЛ–6, под действием которых В–клетка размножается, образуя клон плазматических клеток (плазмоцитов). Плазмоциты синтезируют антитела. Часть зрелых В–лимфоцитов после антигензависимой дифференцировки циркулируют в организме в виде клеток памяти.

    Антитела, специфически взаимодействуя с антигенными детерминантами (эпитопами) на поверхности микроорганизмов, образуют с ними иммунные комплексы, что ведет к активации мембраноатакующего комплекса системы комплемента и лизису микробных клеток. Кроме того, иммунные комплексы, включающие микроорганизмы и специфические антитела, быстрее и легче захватываются фагоцитирующими клетками организма при участии Fc–рецепторов. При этом ускоряется и облегчается внутриклеточная гибель и переваривание. Защитная роль антител в антитоксическом иммунитете определяется также их способностью нейтрализовать токсины. Секреторные иммуноглобулины класса А обеспечивают местный специфический иммунитет слизистых оболочек, препятствуя прикреплению и проникновению патогенных микроорганизмов.

    Читайте также:  Сладкое на диете - инструкция, применение, отзывы

    Вместе с тем гуморальная защита малоэффективна против внутриклеточно паразитирующих бактерий, риккетсий, хламидий, микоплазм, грибов, простейших и вирусов. Против этих возбудителей более эффективны клеточные механизмы специфического иммунитета, к которым относится иммунное воспаление – реакция гиперчувствительности замедленного типа (ГЗТ) и цитотоксическая активность Т–киллеров, NК–клеток, макрофагов.


    Рис. 1. Гуморальный иммунный ответ.
    В результате кооперации макрофагов, Т–хелперов и В–лимфоцитов и дальнейшей дифференцировки
    В–лимфоцитов в плазматические клетки, последние продуцируют антитела, которые нейтрализуют антиген.

    Клеточные иммунные реакции

    В очаге иммунного воспаления Т–эффекторы ГЗТ, активированные при контакте с микробными антигенами, продуцируют лимфокины, индуцирующие микробоцидные механизмы фагоцитов. В результате усиливается внутриклеточная гибель захваченных фагоцитами возбудителей.

    Гибель клеток–»мишеней» вместе с паразитирующими в них возбудителями может наступить вследствие их распознавания Т–киллерами, специфически сенсибилизированных против микробных антигенов.

    Другой механизм гибели зараженных клеток носит название антителозависимой цитотоксичности (АЗЦТ). Он заключается в распознавании микробных антигенов на мембране зараженной клетки–»мишени» антителами, адсорбированными на Fc–рецепторах NK–клеток или макрофагов. При этом цитотоксичность является результатом действия лизосомных ферментов и других продуктов секреции данных клеток.

    В целом клеточные механизмы обеспечивают защиту организма против факультативно и облигатно внутриклеточных паразитов, что позволяет оценивать напряженность специфического иммунитета по результатам кожно–аллергической реакции. Этим же объясняется и тот факт, что наиболее эффективными для специфической профилактики таких инфекций являются вакцины из живых ослабленных микроорганизмов, активирующие клеточные механизмы иммунитета.


    Рис. 2. Клеточный иммунный ответ опосредован активированными
    Т–хелперами макрофагами и другими фагоцитирующими клетками, а также цитотоксическими Т–лимфацитами.

    Иммунологическая память

    Иммунологическая память – способность организма отвечать на повторное введение антигена иммунной реакцией, характеризующейся большей силой и более быстрым развитием.

    Клетки иммунологической памяти – долгоживущие Т– и В–лимфоциты, сохраняющие многие годы способность реагировать на повторное введение антигена, так как вырабатываются рецепторы к этому антигену. Иммунологическая память проявляется как ускоренный специфический ответ на повторное введение антигена.

    Иммунологическая память к антигенным компонентам окружающей среды лежит в основе аллергических заболеваний, а к резус–антигену (возникает при резус–несовместимости беременности) – в основе гемолитической болезни новорожденных. Феномен иммунологической памяти используется в практике вакцинации людей.

    Иммунологическая толерантность

    Иммунологическая толерантность – явление, противоположное иммунному ответу и иммунологической памяти, проявляющееся в том, что на введение антигена вместо выработки иммунитета в организме развивается ареактивность, инертность, отсутствие ответа на антиген.

    Иммунный ответ против собственных тканей организма в нормальных условиях не развивается, т.е. иммунная система толерантна к подавляющему большинству Аг тканей организма (аутоантигены). Искусственная толерантность к чужеродным Аг может быть вызвана иммунизацией по определенной схеме (например, толерантность «низкой дозы» – дробное введение Аг в возрастающих количествах или толерантность «высокой дозы» – однократное введение Аг в высокой дозе).

    1.2. ВИДЫ ИММУНИТЕТА

    Многообразие систем защиты организма позволяют человеку оставаться невосприимчивым к действию инфекционных агентов.

    Видовой иммунитет (врожденный) – генетически закрепленная невосприимчивость присущая каждому виду. Например, человек никогда не заболевает чумой крупного рогатого скота. Крысы резистентны к дифтерийному токсину.

    Приобретенный иммунитет формируется в течение жизни индивидуума и не передается по наследству; может быть естественным и искусственным, активным и пассивным.

    Естественно приобретенный иммунитет (активный) развивается после перенесенного инфекционного заболевания, протекавшего в клинически выраженной форме, либо после скрытых контактов с микробными Аг (так называемая бытовая иммунизация). В зависимости от свойств возбудителя и состояния иммунной системы организма невосприимчивость может быть пожизненной (например, после кори), длительной (после брюшного тифа) или сравнительно кратковременной (после гриппа).

    Инфекционный (нестерильный) иммунитет – особая форма приобретенной невосприимчивости; не является следствием перенесенной инфекции, обусловлен наличием инфекционного агента в организме. Невосприимчивость исчезает сразу после элиминации возбудителя из организма (например, туберкулез; вероятно, малярия).

    Естественный пассивный иммунитет связан с переносом IgG от матери к плоду через плаценту (передача по вертикали) или с грудным молоком (SIgA) новорожденному. Это обеспечивает устойчивость новорожденного ко многим возбудителям в течение некоторого, обычно индивидуально варьирующего срока.

    Искусственно приобретенный иммунитет. Состояние невосприимчивости развивается в результате вакцинации, серопрофилактики (введение сыворотки) и других манипуляций.

    Активно приобретенный иммунитет развивается после иммунизации ослабленными или убитыми микроорганизмами либо их антигенами. В обоих случаях организм активно участвует в создании невосприимчивости, отвечая развитием иммунного ответа и формированием пула клеток памяти.

    Пассивно приобретенный иммунитет достигается введением готовых АТ или, реже, сенсибилизированных лимфоцитов. В таких ситуациях иммунная система реагирует пассивно, не участвуя в своевременном развитии соответствующих иммунных реакций.

    Иммунитет может формироваться против микроорганизмов, их токсинов, вирусов, антигенов опухолей. В этих случаях иммунитет называют антимикробным, антитоксическим, антивирусным, противоопухолевым соответственно. При трансплантации несовместимых тканей возникает трансплантационный иммунитет (реакция отторжения трансплантата).

    Поступление в организм антигена через дыхательные пути, пищеварительный тракт и другие участки слизистых поверхностей и кожи нередко обуславливает развитие выраженной локальной иммунной реакции. В таких случаях речь идет о местном иммунитете.

    1.3. РЕГУЛЯЦИЯ ИММУННОГО ОТВЕТА

    Интенсивность и продолжительность иммунного ответа контролируется и регулируется при участии ряда механизмов обратной связи на генетическом, клеточном и организменном уровнях.

    Генетический контроль иммунного ответа связан с наличием конкретных генов, контролирующих синтез и выход специфических рецепторов на поверхность иммунокомпетентных клеток, что непосредственно влияет на уровень представления и распознавания антигена.

    Иммунная система представляет собой комплекс взаимодействующих клеток, связанных между собой внутренними регуляторными связями посредством цитокинов.

    На уровне организма осуществляется взаимодействие нервной, эндокринной и иммунной систем, иммунный ответ контролируется и регулируется нейрогуморальными механизмами, среди которых ведущую роль играют кортикостероидные гормоны, подавляющие процессы пролиферации, дифференцировки и миграции лимфоидных клеток и ингибирующие биосинтез интерлейкинов.

    Воспаление – сумма защитно–адаптивных реакций, развивающихся в тканях при их повреждении; впоследствии они могут полностью восстанавливать свою структуру и функции либо в них формируются стойкие дефекты. Хорошо известны классические признаки, характеризующие острое воспаление: покраснение, отек, боль, локальное повышение температуры и нарушение функций органа или ткани. Если интенсивность острой реакции оказывается недостаточной для элиминации возбудителя, то она меняет свои характеристики и принимает хроническое течение.

    С позиции защиты от патогенов большинство системных реакций острого воспаления резко изменяет лимфо– и кровообращение в очаге. Вазодилатация и повышение проницаемости капилляров облегчает выход из просвета капилляров больших молекул (например, компонентов комплемента) и полиморфонуклеаров. Весьма важным фактором является снижение рН в воспаленных тканях, обусловленное преимущественно секрецией молочной кислоты фагоцитами. Снижение рН оказывает губительное действие на бактерии, повышает микробицидную активность низкомолекулярных органических кислот и снижает резистентность к действию антимикробных химиопрепаратов.

    Любое инфекционное воспаление начинается с запуска комплементарного каскада и активации свертывающей системы, многие компоненты которых известны как медиаторы воспалительных реакций.

    © ФГБОУ ВПО «Красноярский государственный аграрный университет»

  • Ссылка на основную публикацию
    Филиал на Серпуховской — Филиалы
    Клиника Семейная на метро Серпуховская «Клиника Семейная» — современная медицинская клиника, в которой представлены амбулаторные, диагностические, консультативные и лечебные услуги....
    Ущемленная грыжа симптомы, лечение, клинические рекомендации
    При ущемленной грыже следует Ущемление является самым тяжелым осложнением грыж, наблюдается у 3 - 15% больных с грыжами. Ущемление -...
    Фагоцитоз стадии и пути фагоцитоза
    История открытия фагоцитоза фагоцитоз — фагоцитоз … Орфографический словарь-справочник ФАГОЦИТОЗ — Быстрое увеличение в крови числа белых шариков, вследствие проникновения...
    Филлеры в носогубки — инъекционные препараты — гиалуроновые филлеры
    Филлеры в носогубные складки 30 августа 2019 г. 5 минут на чтение Филлерами в носогубные складки называют препараты, которые омолаживают...
    Adblock detector