Фосфатидилхолин формула, состав, свойства и применение — OneKu

Фосфолипиды (фосфатиды)

Фосфолипиды содержатся во всех тканях животных и растений. Много фосфатидов найдено в нервной ткани и головном мозге животных, а также в желтке яиц птиц. Они содержат остаток глицерина, жирных кислот, фосфорной кислоты, азотистых оснований.

Различают: холинфосфатиды, коламинфосфатиды, серинфосфатиды, ацетальфосфатиды, инозитфосфатиды, сфингофосфатиды.

Фосфатиды нерастворимы в воде, но способны набухать в ней и образовывать водные эмульсии, хорошо растворяются в эфире, бензоле, хлороформе. В ацетоне, в отличие от нейтральных жиров и стеринов, фосфатиды не растворимы. Этим свойством пользуются для отделения фосфатидов от стеринов и жиров. Фосфатиды легко окисляются из-за наличия ненасыщенных жирных кислот.

Холинфосфатиды или лецитины– широко распространены в тканях животных, растений, микробов, являются компонентами большинства мембран животных клеток. Много лецитина в ткани мозга, надпочечниках, эритроцитах. В яичном желтке его до 8-10%.

Холинфосфатиды образованы путем взаимодействия глицерина с двумя молекулами жирных кислот и молекулой фосфорной кислоты, которая соединена эфирной связью с азотистым основанием холином.

Соединение холина с фосфорной кислотой

Холинфосфатиды животного и растительного происхождения отличаются друг от друга главным образом природой входящих в них жирных кислот и положением остатка фосфорной кислоты. В зависимости от положения последнего различаются α-лецитины, если остаток H3PO4 расположен у первого углеродного атома глицерина, и β-лецитины. если в образовании эфирной связи с фосфорной кислотой участвует вторичный спиртовый гидроксил глицерина.

Как видно из формулы, в молекуле лецитина имеется кислотный гидроксил в остатке фосфорной кислоты и основной в остатке холина, поэтому лецитин может существовать в виде внутренней соли. Правильнее изображать формулу в следующем виде:

В состав лецитинов могут входить олеиновая, пальмитиновая, линолевая кислота, арахидоновая и другие кислоты. При гидролизе лецитинов получаются жирные кислоты, холин, глицерофосфорная кислота, которая затем может распадаться на свободную фосфорную кислоту и глицерин.

Составная часть лецитина – холин обнаруживается в тканях и жидкостях организма как в свободном состоянии, так и в связанном с белками тканей. Он образует соединение с уксусной кислотой по типу сложных эфиров, называемое ацетилхолином:

Ацетилхолин имеет важное значение в процессах нервной деятельности как переносчик нервного возбуждения (медиатор). Холин легко окисляется, превращаясь сначала в альдегид – мускарин (найден впервые в грибе мухомора), затем в кислоту-бетаин, встречающуюся в тканях животных и растений.

Коламинфосфатиды (кефалины)– построены также как и холинфосфатиды из глицерина, жирных кислот и фосфорной кислоты, но в качестве азотистого основания в них входит этаноламин (коламин): CH2(NH2 )СН2ОН

Кефалины широко распространены в природе. Впервые были найдены в составе головного мозга (Cephalus – голова), находятся в печени, почках, яичном желтке и др. Они растворимы в спирте и этим отличаются от лецитинов.

Серинфосфатиды.Структура серинфосфатида аналогична структуре лецитина и кефалина, но в качестве азотистого соединения в них входит аминокислота серии:

Серинфосфатиды впервые были найдены в составе мозга, имеют следующее строение:

Серинфосфатиды различаются по характеру входящих в них кислот, обладают кислым характером, т.к. у них имеется свободная карбоксильная группа. Между холинфосфатидами, коламинфосфатидами и серинфосфатидами существует родство, азотистые соединения этих фосфатидов могут переходить друг в друга:

серии коламин холин

Превращение серина в коламин происходит путем декарбоксилирования, а коламина в холин – путем метилирования.

Инозитфосфатиды содержат в качестве замещающего полярного радикала производное циклогексана – инозит – шестиатомный циклический спирт.

Впервые выделены из туберкулезных бацилл, а позже из растительных и животных тканей. Кроме обычных (глицерин, инозит, фосфорная кислота, жирные кислоты) компонентов обнаружены сложные инозитфосфатиды, содержащие амины, аминокислоты, углеводные остатки.

Читайте также:  Анализ на паратгормон ᐈ сдать анализ крови на паратгормон МедЛаб

Гликофосфоглицериды – углеводсодержащие фосфолипиды – обнаружены в различных тканях. В них в качестве полярной группы выступает молекула углевода (их называют также фосфатидилсахара). Связь между фосфолипидом и углеводом может быть О-эфирной или N-гликозидной. Так, выделены производные фосфатидилглицерина, содержащие остаток глюкозамина в третьем положении (О-эфирная связь).

Фосфоглицериды, содержащие группу -OCH=CH- (альдегидогенные) или фосфосодержащие плазмогены, присутствуют во всех тканях животного организма. Их особенно много в головном и спинном мозге, сердечной мышце, где они представлены в мембранах клетки.

Так, фосфолипиды составляют 25-30% сухой массы мозга, из которых на долю плазмогенов приходится до 90%. Фосфолипиды в качестве азотистого компонента чаще всего содержат этаноламин, холин, инозит.

Биосинтез кефалина и лецитина и их биологическая роль. Липотропные факторы.

Биосинтез кефалина. Биологич. значение.

Кефалины в тканях (главным образом в составе нервной ткани). Кефалины принимают участие в переносе жирных кислот от печени к другим органам и обратно. При недостаточном образовании кефалинов в печени возникает ее ожирение. Кефалины играют определенную роль в процессах свертывания крови, способствуя превращению протромбина в активный тромбин. Кроме того, кефалины, входя в состав цитоплазматических мембран, определяют их проницаемость для других соединений.

Биосинтез лецитина. Биологическая роль.

Фосфатидилхолины- осн. липидные компоненты плазматич. мембран клеток и мембран субклеточных органелл (ядра, митохондрий и др.) животных, растений и микроорганизмов. В больших кол-вах фосфатидилхолины содержатся в сердечной мышце, печени, почках, яичных желтках. Вх. в сост. сурфактанта. Вып. метаболич. и струк. ф-ции в мембранах.

Холин получил название липоторопные фактора. При его недост набл. жировое перерождение печени. Особая роль лецитина как пищевого фактора обусл. именно холином. Относ. к витаминоподобным вещ-вам.

Строение холестерина, его метаболизм биологическое значение. Представление о биосинтезе холестерина. Роль холестерина и его эфиров в построении биологических мембран. Регуляция синтеза и активности ГМГ-редуктазы.

Химическое строение холестерина.

Является важнейшим компонентом биологических мембран, из него в организме возникают кортикостероиды, половые гормоны, желчные кислоты, витД3

Стоение холестерина. Его биологическое знаечение. Биосинтез.

Холестерол — стероид, харак. только для жив. орг. Он синт-ся во многих тк. человека, но основное место синт. — печень. Входит в сост. всех мембран кл. и влияет на их св-ва, служит исход. субстратом в синт. жёлч. к-т и стер. гормонов. Предш. в метаболич. пути синтеза холестерола превращ. также в убихинон — комп. дыхат.й цепи и долихол, уч. в синтезе гликопрот. Этериф. холестерол преобл. в крови и запасается в небол. кол-вах в некоторых типах клеток, исп. его как субстрат для синтеза других в-в. Сод-е холестерола увелич. по напр. к наруж. стороне плазмат. мембр. Встр. между фосфолип.. гидроксильная гр. контакт. с водной фазой. Огранич. текчесть при выс. t и поддерж. текчесть при более низких t.

Холестерол и его эфиры — гидрофоб. молек., поэтому они транспорт. кровью в сост. ЛП.

Синтез холестерола можно разделить на 3 этапа. 1ый этап заканчивается образованием мевалоната. 2 мол. ацетил-КоА конденс. тиолазой с обра-м ацетоацетил-КоА. Гидроксиметилглутарил-КоА-синтаза присоединяет третий ацетильный остаток с образованием 3-гидрокси-3-метилглутарил-КоА.

Происходит восстановление ГМГ-КоА до мевалоната с исп. 2 молек. НАДФН.

На 2ом этапе синтеза мевалонат превращ. в изопентенилпирофосфат. Продукт конденсации 2 изопреновых единиц — геранилпирофосфат. Присоед. ещё 1 изопреновой ед. приводит к обр. фарнезилпирофосфата. 2 молек. фарнезилпирофосфата конденсируются с образованием сквалена — углеводорода линейной структуры, состоящего из 30 углеродных атомов.

На 3м этапе синтеза холестерола сквален через стадию образования эпоксида циклазой превращ. в молек. ланостерола, сод. 4 конденсированных цикла и 30 атомов углерода. Далее происходит 20 последовательных реакций, превращающих ланостерол в холестерол.

Читайте также:  Окраска по Граму - Gram stain

В некоторых тканях гидроксильная группа холестерола этерифицируется с образованием более гидрофобных молекул — эфиров холестерола. Реакция катализируется внутриклеточным ферментом ацилКоА:холестеролаиилтрансферазой. Эфиры холестерола — форма, в которой они депонируются в клетках или транспортируются кровью. В крови около 75% холестерола находится в виде эфиров.

Регуляция ключевого фермента синтеза холестерола (ГМГ-КоА-редуктазы) происходит разными способами. При увелич. соотнош. инсулин/глюкагон фермент дефосфорилир. и перех., в акт. сост. Действие инсулина осущ. через:

— фосфатазу киназы ГМГ-КоА-редуктазы, которая превращает киназу в неактивное дефосфорилированное состояние;

— фосфатазу ГМГ-КоА-редуктазы путём превращения её в дефосфорилир. активное сост. Рез-том этих р-ций служит обр-е дефосфорилир. акт. формы ГМГ-КоА-редуктазы.

В абсорбтивный период синтез холестерола увелич. В этот период увелич. и доступ. исход. субстрата для синтеза холестерола — ацетил-КоА (в рез-те приёма пищи, содержащей углеводы и жиры, так как ацетил-КоА образуется при распаде глюкозы и жирных кислот). В постабсорбтивном сост. глюкагон через протеинкиназу А стимулирует фосфорилир. ГМГ-КоА-редуктазы, переводя её в неактив. сост. В рез-те синтез холестерола в постабсорбтивном периоде и при голодании ингиб. Конеч. продукт метаб. пути (холестерол) снижает ск-сть транскрип гена ГМГ-КоА-редуктазы, подавляя собст. синтез. В печени активно идёт синтез жёлч. к-т из холестерола, поэтому и жёлч. к-ты (как конеч. прод. синтеза) подавляют акт-ть гена ГМГ-КоА-редуктазы.

Последнее изменение этой страницы: 2017-01-24; Нарушение авторского права страницы

Кефалин формула структурная

Фосфолипиды (фосфоглицериды) — это сложные липиды, производные фосфатидной кислоты. Липидам принадлежит главная роль в образовании мембран клеток. Основная часть липидов в мембранах представлена фосфолипидами, гликолипидами и холестерином.

В мембранах имеются фосфолипиды двух типов — глицерофосфолипиды и сфингофосфолипиды (в данном материале не рассматриваем). В состав глицерофосфолипидов входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения.

Общая формула для фосфолипидов представлена рисунком «Фосфоглицерид»: где R1 и R2 — радикалы высших жирных кислот (насыщенные и ненасыщенные жирные кислоты соответственно), R3 — радикал азотистого основания, соединенный через гидроксил фосфата эфирной связью с производным фосфатидной кислоты.

Характерным для всех фосфолипидов является то, что одна часть их молекулы (радикалы R1 и R2) обнаруживает резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду остатка фосфорной кислоты и положительному заряду радикала R3.

Из всех липидов фосфолипиды обладают наиболее выраженными полярными свойствами. При помещении фосфолипидов в воду, в истинный раствор переходит лишь небольшая их часть, основная же масса «растворенного» липида находится в водных системах в форме мицелл. Другими конфигурациями молекул фосфолипидов являются двухслойная (типичное состояние для фосфолипидов биомембран) и гексагональная. Конфигурация молекулы фосфолипида зависит от внутренних свойств самой молекулы (ее строение) и от внешних факторов (гидратация, температура, рН, ионная сила раствора).

Представленная рисунком «Фосфоглицерид» молекула рассматривается как основа для всех сложных липидов, название которых зависит от азотистого основания (холин, этаноламин, серин — выделено красным), шестиуглеродного сахароспирта — инозитол или представлена остатками глицерина — кардиолипин. Полярные группы, в том числе, позволяют разделить фосфолипиды на классы.

Существует несколько классов фосфолипидов:

  • «нейтральные» фосфолипиды — имеют отрицательно заряженную фосфатную группу и положительно заряженную аминогруппу, что в сумме вызывает электрически нейтральное состояние. К ним относятся:
    • фосфатидилхолин (старое название — лецитин) — в молекуле которого соединены глицерин, высшие жирные кислоты, фосфорная кислота и азотистое основание — холин
    • фосфатидилэтаноламин (кефалин) — его отличие от лецитина состоит в том, что он имеет азотистое основание — этаноламин

    Фосфатидилхолины и фосфотидилэтаноламины встречаются в организме животных и высших растений в наибольшем количестве. Эти две группы фосфоглицеридов метаболически связаны друг с другом и являются главными липидными компонентами мембран клеток в плане стабилизации их двухслойности.
    «отрицательно заряженные» — анионные фосфолипиды — имеют отрицательно заряженную фосфатную группу. К ним относятся:

      фосфатидилсерин — в молекуле азотистым соединением служит остаток аминокислоты серина.

    Фосфатидилсерины распространены гораздо менее широко, чем фосфатидилхолины и фосфатидилэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезе фосфатидилэтаноламинов.
    фосфатидилинозитол — фосфолипид, не содержащий азот. Радикалом (R3) в этом подклассе фосфоглицеридов является шестиуглеродный циклический спирт — инозитол.

    Фосфатидилинозитолы довольно широко распространены в природе. Обнаружены у животных, растений и микроорганизмов. В животном организме они найдены в мозге, печени, легких.

фосфатидилглицерины:

    полиглицеринфосфат — кардиолипин; остов молекулы кардиолипина включает остатки глицерина, соединенные друг с другом фосфодиэфирными мостиками через положение 1 и 3, гидроксильные группы двух внешних остатков глицерина этерифицированы жирными кислотами (R1, R2, R3, R4 — радикалы высших жирных кислот).

    Кардиолипины входят состав мембран митохондрий и бактерий. Во внутренней мембране митохондрий до 20% от всех фосфолипидов принадлежит кардиолипину. Кардиолипин не выявляется на плазменных мембранах, где до 60% от общего пула фосфолипидов составляют фосфатидилхолин и сфингомиелин, до 30% — фосфатидилэтаноламин, до 15% — фосфатидилсерин и менее 5% — фосфатидилинозитол.

Двойной липидный слой мембран. В клеточной мембране фосфолипиды образуют двойной слой, в котором гидрофобные цепи жирных кислот направлены внутрь мембраны, а гидрофильные полярные группы кнаружи. Мембранные белки могут быть частично или полностью погружены в мембрану и включаться в состав липидного слоя (интегральные белки) или располагаться на ее поверхности (периферические белки). Периферические белки присоединены к мембране за счет полярных или ионных взаимодействий. Некоторые интегральные белки могут прошивать мембрану насквозь, выступая за ее пределы по обе стороны, например, белок гликофорин, входящий в состав плазматической мембраны эритроцита.

Жидкостность мембран. Двойной липидный слой мембраны имеет жидкокристаллическую структуру; положение молекул липидов упорядочено, но они сохраняют способность к диффузии в пределах слоя параллельно поверхности мембраны (латеральная диффузия). Поперечная диффузия (обмен молекул между слоями) возможна лишь в ограниченных размерах.

Асимметрия мембран. Мембранные структуры клетки в норме замкнуты. Каждая мембрана имеет внутреннюю и внешнюю поверхность, которая обладает выраженной ассиметрией в плане расположения различных фосфолипидов. Например, фосфатидилхолин локализуется на внешней стороне мембраны эритроцита, а на внутренней расположены фосфатидилэтаноламины и фосфатидилсерины. В норме анионные фосфолипиды не присутствуют на внешней поверхности биомембран. Появление фосфатидилсерина (ФС) на внешней поверхности мембраны эритроцита является сигналом для выведения его из кровяного русла. Изменение асимметрии мембраны тромбоцита, приводящее к появлению ФС на внешней мембране, вносит свой вклад в развитие локальной реакции свертывания крови. Отрицательно заряженные фосфолипиды создают поверхность, на которой происходит сборка ферментных комплексов двух основных реакций коагуляционного каскада. В одном из них (теназный комплекс) фактор X активируется комплексом фактора IXa и VIIIa, а в другом — протромбиназная реакция, происходит конверсия протромбина в тромбин ферментным комплексом, состоящим из фактора Xa и Va (протромбиназный комплекс). Взаимодействие факторов IXa, Xa и протромбина с липидной поверхностью происходит посредством образования кальций-зависимого мостика между остатками гамма-карбоксиглютаминовой кислоты этих белков и отрицательно заряженными полярными группами фосфолипидов. Связывание с липидной поверхностью приводит к увеличению локальной концентрации и эффективного расположения коагуляционных факторов, что способствует максимальной скорости протекания реакции. Любые вещества, мешающие сборке этих комплексов на фосфолипидной поверхности, в том числе антитела к фосфолипидам потенциально способны повышать уровень образования тромбина и нарушать свертывание крови.

Ссылка на основную публикацию
Форсига инструкция по применению
Препарат Форсига — инструкция по применению, отзывы, дешевые аналоги Пациентам, страдающим сахарным диабетом, зачастую не удается нормализовать гликемию только посредством...
Филиал на Серпуховской — Филиалы
Клиника Семейная на метро Серпуховская «Клиника Семейная» — современная медицинская клиника, в которой представлены амбулаторные, диагностические, консультативные и лечебные услуги....
Филлеры в носогубки — инъекционные препараты — гиалуроновые филлеры
Филлеры в носогубные складки 30 августа 2019 г. 5 минут на чтение Филлерами в носогубные складки называют препараты, которые омолаживают...
Фортранс инструкция по применению перед колоноскопией отзывы
Как подготовиться к колоноскопии Фортрансом Преимущества и недостатки препарата Механизм действия Состав препарата Показания к применению Этапы подготовки к колоноскопии...
Adblock detector