Соединительные ткани, подготовка к ЕГЭ по биологии

Зрелые клетки костной ткани

Костная ткань является основной опорной тканью и структурным материалом для костей, т. е. для скелета. Полностью дифференцированная кость является самым прочным материалом организма, за исключением зубной эмали. Она очень устойчива к сжатию и растяжению и исключительно устойчива к деформациям. Поверхность кости (за исключением сочлененных поверхностей) покрыта оболочкой (надкостницей), которая обеспечивает заживление кости после переломов.

Костные клетки и межклеточное вещество

Костные клетки (остеоциты) соединяются между собой длинными отростками и со всех сторон окружены основным веществом кости (внеклеточным матриксом). По составу и строению основное вещество кости своеобразно. Внеклеточный матрикс заполнен коллагеновыми волокнами, расположенными в основном веществе, богатом неорганическими солями (соли кальция, в первую очередь фосфат и карбонат).

Он содержит 20-25% воды, 25-30% органических веществ и 50% различных неорганических соединений. Минеральные вещества кости находятся в кристаллической форме, таким образом обеспечивая ее высокую механическую прочность.

Благодаря хорошему кровоснабжению, которое благоприятствует усиленному обмену, кость обладает биологической пластичностью. Жесткий и крайне прочный материал кости представляет собой живую ткань, которая способна легко приспосабливаться к изменению статических нагрузок, в том числе при изменении их направления. Отчетливых границ между органическими и минеральными компонентами кости не существует, и поэтому их присутствие может быть установлено лишь при микроскопическом исследовании. При сжигании кость сохраняет только минеральную основу и становится хрупкой. Если кость поместить в кислоту, то остаются лишь органические вещества, и она становится гибкой, как резина.

Строение трубчатой кости

Строение кости особенно наглядно видно на продольном распиле длинной кости. Различают плотный наружный слой (substantia соmpacta, compacts, компактное вещество) и внутренний (губчатый) слой (substancia spongiosa, spongiosa). В то время как плотный наружный слой характерен для длинных костей и особенно заметен на теле кости (диафизе), губчатый слой в основном находится внутри ее концов (эпифизов).

Такая «облегченная конструкция» обеспечивает прочность кости при минимальном расходе материала. Кость адаптируется к возникающим нагрузкам посредством ориентации костных перекладин (трабекул). Трабекулы располагаются по линиям сжатия и растяжения, возникающим при нагрузке. Пространство между трабекулами в губчатых костях заполнено красным костным мозгом, обеспечивающим кроветворение. Белый костный мозг (жировой мозг) в основном находится в полости диафизов.

У длинных костей наружный слой обладает ламеллярной (пластинчатой) структурой. Поэтому кости также называются ламеллярными. Архитектура ламеллярной сети (остеон, или гаверсова система) хорошо видна на спилах. В центре каждого остеона проходит кровеносный сосуд, через который в кость из крови поставляются питательные вещества.

Вокруг него группируются остеоциты и внеклеточный матрикс. Остеоциты всегда располагаются между пластинками, в которых находятся спирализованные коллагеновые фибриллы. Клетки соединены друг с другом посредством отростков, проходящих через мельчайшие костные канальцы (каналикулы). Через эти канальцы из внутренних кровеносных сосудов поступают питательные вещества. При развитии остеона клетки, образующие кость (остеобласты), в больших количествах начинают поступать из внутренней части кости, образуя наружную пластинку остеона. На эту пластинку накладываются коллагеновые фибриллы, которые спирализуются. Между фибриллами упорядоченно располагаются кристаллы неорганических солей.

Затем с внутренней стороны образуется следующая пластинка, в которой коллагеновые фибриллы располагаются перпендикулярно фибриллам первой пластинки. Процесс продолжается до тех пор, пока в центре останется только место для так называемого гаверсова канала, через который проходит кровеносный сосуд. Также в канале находится небольшое количество соединительной ткани. Зрелый остеон достигает около 1 см в длину и состоит из 10-20 цилиндрических пластинок, вставленных одна в другую. Костные клетки как бы замурованы между пластинками и соединяются с соседними клетками посредством длинных тончайших отростков. Остеоны связаны друг с другом каналами (фолькмановы каналы), через которые ответвления сосудов проходят в гаверсовы каналы.

Губчатые кости также обладают пластинчатой структурой, однако в этом случае пластинки расположены слоями, как в листе фанеры. Поскольку клетки губчатой кости также обладают высокой метаболической активностью и нуждаются в питательных веществах, пластинки в этом случае тонкие (около 0,5 мм). Связано это с тем, что обмен питательными веществами между клетками и костным мозгом происходит исключительно за счет диффузии.

Читайте также:  Острый аденоидит как лечить миндалины Аденоиды у детей и взрослых — лечение, симптомы, диагноз

На протяжении жизни организма остеоны плотного слоя и пластинки губчатых костей могут хорошо приспосабливаться к изменениям статических нагрузок (например, к переломам). При этом в плотном и губчатом веществе старые ламеллярные структуры подвергаются разрушению, и возникают новые. Пластинки разрушаются специальными клетками остеокластами, а остеоны, находящиеся в процессе обновления, называются интерстициальными пластинками.

Развитие костной ткани

На первой стадии дифференцировки кости человека пластинчатая ткань не образуется. Вместо этого возникает ретикулофиброзная (грубоволокнистая) кость. Это происходит в эмбриональном периоде, а также при заживлении переломов. В грубоволокнистой кости сосуды и коллагеновые волокна располагаются неупорядоченно, чем она напоминает прочную, богатую волокнами соединительную ткань. Грубоволокнистая кость может образоваться двумя путями.

1. Непосредственно из мезенхимы развивается мембранная кость. Этот тип окостенения называется интрамембранной оссификацией или десмальным окостенением (прямой путь).

2. Вначале в мезенхиме образуется хрящевой зачаток, который затем превращается в кость (эндохондральная кость). Процесс называется эндохондральным или непрямым окостенением.

Приспосабливаясь к нуждам растущего организма, развивающиеся кости постоянно меняют формы. Пластинчатые кости также изменяются в соответствии с функциональной нагрузкой, например, по мере увеличения веса тела.

Развитие длинных костей

Большинство костей развивается из хрящевого зачатка по непрямому пути. Лишь некоторые кости (черепа и ключицы) образуются путем интрамембранной оссификации. Однако части длинных костей могут образовываться по прямому пути даже в том случае, если хрящ уже заложен, например, в виде перихондральной костной манжетки, за счет которой происходит утолщение кости (перихондральная оссификация).

Внутри кости ткань закладывается по непрямому пути, причем вначале хрящевые клетки удаляются хондрокластами, а затем замещаются за счет хондральной оссификации. На границе диафиза и эпифиза развивается эпифизарная пластинка (хрящ). В этом месте кость начинает расти в длину за счет деления хрящевых клеток. Деление продолжается до остановки роста. Поскольку эпифизарная хрящевая пластинка не содержит кальция, она не видна на рентгеновском снимке. Рост кости в пределах эпифизов (центры оссификации) начинается лишь с момента рождения. Многие центры оссификации развиваются только в первые годы жизни. В местах присоединения мышц к костям (апофизы) образуются специальные центры оссификации.

Различия между костью и хрящом

Клетки аваскулярной кости образуют плотное вещество, выполняющее транспортные функции. Такая кость хорошо регенерирует и постоянно адаптируется к изменению статических условий. В аваскулярном хряще клетки изолированы друг от друга и от источников питательных веществ. По сравнению с костью хрящ в меньшей степени способен к регенерации и обладает небольшими адаптационными возможностями.

Самые популярные курсы массажа
в Санкт-Петербурге!
Приходите и Вы!

Строение костной ткани человека

Для обыкновенного человека самое главное – чтобы не болели кости, не хрустели суставы, чтобы всё двигалось и функционировало. Однако знание того, какие клетки костной ткани существуют и как они между собой взаимодействуют, поможет не только врачу. Если простой человек будет обладать такой информацией, возможно он будет более внимателен к себе и, в случае травм, у него будет больше понимания относительно серьезности повреждений, а значит, он сможет более квалифицированно оказать первую помощь, как себе, так и другим.

Не надо недооценивать кости

Несмотря на то, что на первый взгляд все 206 костей, которые имеются в человеческом организме, кажутся безжизненными, это не правда: в них происходит очень много различных процессов, некоторые из которых мы рассмотрим в этой статье.

Состав кости

Итак, сначала некая вводная информация, которая будет полезная тем, кого интересует строение костной ткани. Она состоит из клеток четырех типов:

  • остеобласты;
  • остеоциты;
  • остеокласты;
  • остеогенные клетки.

Как вы увидите из дальнейших рассуждений, все они работают в неком тандеме. Повреждение хотя бы одного вида клеток будет означать костную патологию, тяжесть которой будет зависеть от количества поврежденных клеток.

Остеобласт

Клетка, обеспечивающая возможность регенерации для кости. Несмотря на то, что её величина составляет от 15 до 20 мкм, функции этого типа клетки огромны: она формирует новое межклеточное вещество.

После того, как межклеточное вещество будет сформировано, сама клетка окажется в его центре. После того, как межклеточное вещество затвердеет, остеобласт окажется в своеобразной “ловушке”, где изменит свою структуру превратится в остеоцит – полноценную клетку кости.

Читайте также:  Салон Нола на; Татарской улице (метро Павелецкая, Третьяковская, Новокузнецкая)

Остеоцит

Зрелая форма остеобласта. Данная клетка расположена в углублении, называемом лакуной, и со всех сторон окружена костной тканью.

Основная задача остеоцита – поддержание на постоянном уровне минеральной матрицы. Через длинные каналы остеоцит получает питательные вещества и взаимодействует с другими клетками.

Остеокласт

Способствует развитию новой костной структуры. Обратите внимание: несмотря на то, что данный тип клеток напрямую относится к кости, он имеет не костное происхождение, а появляется из моноцитов. Остеокласты уничтожают старую кость, а остеобласты формируют новую костную структуру. Можно с уверенностью говорить, что за счёт симбиоза работы остеобластов и остеокластов в организме человека работает обновление костей. Если бы таких клеток не было или один из указанных типов клеток неправильно бы функционировал, у человека очень быстро костная система пришла бы в негодность.

Остеогенные клетки

Одно можно сказать абсолютно точно: остеоген способен трансформироваться в остеобласты. В то время, как остеокласты, остеобласты и остеоциты не могут делиться, остеогенные клетки не потеряли этой способности и могут воспроизводить себе подобных. Таким образом, если в механизме деления остеогенных клеток не произошло никакого сбоя, можно быть уверенным в том, что костная структура всегда будет иметь способность к регенерации.

Надкостница

Костная ткань человека была бы неполной и незавершенной, если бы не было надкостницы. Это структура, покрывающая кости снаружи и имеющая два выраженных слоя:

  • наружный;
  • внутренний. Этот слой особенно хорошо выражен у детей, а у взрослых он менее заметен.

У надкостницы есть несколько очень важных функций:

  1. Питательная. На поверхности надкостницы имеются сосуды, которые вместе с нервами проникают внутрь через специальный питательные отверстия.
  2. Регенераторная. Остеогенные клетки, находящиеся в составе надкостницы, могут трансформироваться в остеобласты, которые, в свою очередь, формируют новую костную ткань.
  3. Механическая или опорная. Именно надкостница обеспечивает связь между, собственно, костью и прилегающими к ней структурами – мышцами, сухожилиями и т.д.

Строение костной ткани человека

Скелетные ткани

характеристика костной ткани

Костные ткани

Костные ткани (textus ossei) — это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.

Органическое вещество — матрикс костной ткани — представлено в основном белками коллагенового типа и липидами. По сравнению с хрящевой тканью в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости.

Таким образом, твердое межклеточное вещество костной ткани (в сравнении с хрящевой тканью) придает костям более высокую прочность, и в тоже время – хрупкость. Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства костной ткани — способность сопротивляться растяжению и сжатию.

Несмотря на высокую степень минерализации, в костных тканях происходят постоянное обновление входящих в их состав веществ, постоянное разрушение и созидание, адаптивные перестройки к изменяющимся условиям функционирования. Морфофункциональные свойства костной ткани меняются в зависимости от возраста, физических нагрузок, условий питания, а также под влиянием деятельности желез внутренней секреции, иннервации и других факторов.

Классификация

Существует два основных типа костной ткани:

  • ретикулофиброзная (грубоволокнистая),
  • пластинчатая.

Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества. В грубоволокнистой ткани коллагеновые волокна образуют толстые пучки, идущие в разных направлениях, а в пластинчатой ткани костное вещество (клетки, волокна, матрикс) образуют системы пластинок.

К костной ткани относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества и опорной, механической функции.

Клетки костной ткани: остеобласты, остеоциты и остеокласты. Все они развиваются из мезенхимы, как и клетки хрящевой ткани. Точнее – из мезенхимных клеток склеротома мезодермы. Однако остеобласты и остеоциты связаны в своём диффероне так же, как фибробласты и фиброциты (или хондробласты и ходроциты). А остеокласты имеют иное, — гематогенное происхождение.

Читайте также:  Максим Фадеев - Музыкант, Певец, Продюсер, Режиссер, Автор

Костный дифферон и остеогистогенез

Развитие костной ткани у эмбриона осуществляется двумя способами:

1) непосредственно из мезенхимы, — прямой остеогенез;

2) из мезенхимы на месте ранее развившейся хрящевой модели кости, — это непрямой остеогенез.

Постэмбриональное развитие костной ткани происходит при ее физиологической и репаративной регенерации.

В процессе развития костной ткани образуется костный дифферон:

  • стволовые клетки,
  • полустволовые клетки (преостеобласты),
  • остеобласты (разновидность фибробластов),
  • остеоциты.

Вторым структурным элементом являются остеокласты (разновидность макрофагов), развивающиеся из стволовых клеток крови.

Стволовые и полустволовые остеогенные клетки морфологически не идентифицируются.

Остеобласты (от греч. osteon — кость, blastos — зачаток), — это молодые клетки, создающие костную ткань. В кости они встречаются только в надкостнице. Они способны к пролиферации. В образующейся кости остеобласты покрывают почти непрерывным слоем всю поверхность развивающейся костной балки.

Форма остеобластов бывает различной: кубической, пирамидальной или угловатой. Размер их тела около 15—20 мкм. Ядро округлой или овальной формы, часто располагается эксцентрично, содержит одно или несколько ядрышек. В цитоплазме остеобластов хорошо развиты гранулярная эндоплазматическая сеть, митохондрии и аппарат Гольджи. В ней выявляются в значительных количествах РНК и высокая активность щелочной фосфатазы.

Остеоциты (от греч. osteon — кость, cytus — клетка) — это преобладающие по количеству зрелые (дефинитивные) клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму , компактное, относительно крупное ядро и слабобазофильную цитоплазму. Органеллы развиты слабо. Наличие центриолей в остеоцитах не установлено.

Костные клетки лежат в костных лакунах, которые повторяют контуры остеоцита. Длина полостей колеблется от 22 до 55 мкм, ширина — от 6 до 14 мкм. Канальцы костных лакун заполнены тканевой жидкостью, анастомозируют между собой и с периваскулярными пространствами сосудов, заходящих внутрь кости. Обмен веществ между остеоцитами и кровью осуществляется через тканевую жидкость этих канальцев.

Остеокласты (от греч. osteon — кость и clastos — раздробленный), — это клетки гематогенной природы, способные разрушать обызвествленный хрящ и кость. Диаметр их достигает 90 мкм и более, и они содержат от 3 до нескольких десятков ядер. Цитоплазма слабобазофильна, иногда оксифильна. Остеокласты располагаются обычно на поверхности костных перекладин. Та сторона остеокласта, которая прилежит к разрушаемой поверхности, богата цитоплазматическими выростами (гофрированная каемка); она является областью синтеза и секреции гидролитических ферментов. По периферии остеокласта находится зона плотного прилегания клетки к костной поверхности, которая как бы герметизирует область действия ферментов. Эта зона цитоплазмы светлая, содержит мало органелл, за исключением микрофиламентов, состоящих из актина.

Периферический слой цитоплазмы над гофрированным краем содержит многочисленные мелкие пузырьки и более крупные — вакуоли.

Полагают, что остеокласты выделяют СО2 в окружающую среду, а фермент карбоангидраза способствует образованию угольной кислоты (Н2СО3) и растворению кальциевых соединений. Остеокласт богат митохондриями и лизосомами, ферменты которых (коллагеназа и другие протеазы) расщепляют коллаген и протеогликаны матрикса костной ткани.

Считается, что один остеокласт может разрушить столько кости, сколько создают 100 остеобластов за это же время. Функции остеобластов и остеокластов взаимосвязаны и регулируются гормонами, простагландинами, функциональной нагрузкой, витаминами и др.

Межклеточное вещество (substantia intercellularis) состоит из основного аморфного вещества, импрегнированного неорганическими солями, в котором располагаются коллагеновые волокна, образующие небольшие пучки. Они содержат в основном белок — коллаген I и V типов. Волокна могут иметь беспорядочное направление — в ретикулофиброзной костной ткани, или строго ориентированное направление — в пластинчатой костной ткани.

В основном веществе костной ткани, по сравнению с хрящевой, содержится относительно небольшое количество хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости. Кроме коллагенового белка, в основном веществе костной ткани обнаруживают неколлагеновые белки (остеокальцин, сиалопротеин, остеонектин, различные фосфопротеины, протеолипиды, принимающие участие в процессах минерализации), а также гликозаминогликаны. Основное вещество кости содержит кристаллы гидроксиапатита, упорядоченно расположенные по отношению к фибриллам органической матрицы кости, а также аморфный фосфат кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме. Систематическое увеличение физической нагрузки приводит к нарастанию костной массы от 10 до 50% вследствие высокой минерализации.

Ссылка на основную публикацию
Современные методы диагностики аллергий
Методы диагностики аллергии на анестезию в стоматологии, лечение зубов при аллергической реакции на анестестик Часто в кабинете у стоматолога можно...
Смекта для детей дозы и периодичность
Ацетонемические состояния у детей Ацетонемический синдром – это состояние, возникающее при нарушении обмена веществ в организме ребенка. Диагностировать ацетонемический синдром...
Смекта для новорожденных как разводить, дозировка, отзывы
Смекта для новорожденных: инструкция по применению С рождением малыша ассортимент вашей домашней аптечки должен значительно расшириться. У вас обязательно должен...
Современные методы лечения сахарного диабета
Сколько стоит диабет и как его засечь Чтобы случайно не оказаться в коме Четыре года назад я незаметно для себя...
Adblock detector